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Abstract

Background: Inexpensive pathogen genome sequencing has had a transformative effect on the field of
phylodynamics, where ever increasing volumes of data have promised real-time insight into outbreaks of infectious
disease. As well as the sheer volume of pathogen isolates being sequenced, the sequencing of whole pathogen
genomes, rather than select loci, has allowed phylogenetic analyses to be carried out at finer time scales, often
approaching serial intervals for infections caused by rapidly evolving RNA viruses. Despite its utility, whole genome
sequencing of pathogens has not been adopted universally and targeted sequencing of loci is common in some
pathogen-specific fields.

Results: In this study we highlighted the utility of sequencing whole genomes of pathogens by re-analysing a
well-characterised collection of Ebola virus sequences in the form of complete viral genomes (≈19 kb long) or the
rapidly evolving glycoprotein (GP, ≈2 kb long) gene. We have quantified changes in phylogenetic, temporal, and
spatial inference resolution as a result of this reduction in data and compared these to theoretical expectations.

Conclusions: We propose a simple intuitive metric for quantifying temporal resolution, i.e. the time scale over which
sequence data might be informative of various processes as a quick back-of-the-envelope calculation of statistical
power available to molecular clock analyses.
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Background
The combination of decreasing cost of sequencing and
the unparalleled insight it offers have led to the adop-
tion of pathogen genetic sequencing as one of the most
effective tools in a modern epidemiologist’s toolkit. When
coupled with sophisticated models of evolution pathogen
sequences can be used to look into epidemiological fea-
tures such as cryptic transmission [1], migration [2, 3],
and origins [4] of infectious diseases amongst others.
Pathogen sequences also contain information about past
temporal dynamics before sequence data have been col-
lected [5] due to the pattern of shared and unique muta-
tions inherited from preceding generations. Molecular
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phylogenetic approaches rely on decoding these patterns
of shared mutations into a nested graph known as the
phylogenetic tree. Pathogens often have short generation
times and some, like RNA viruses, also possess poly-
merases with low replication fidelity such that mutations
are generated at a rapid pace [6, 7] leading to fast dif-
ferentiation of pathogen lineages at the genetic level as
they spread. With appropriate sampling and information
(“metadata”) about sequences historic population dynam-
ics can be inferred and quantified from pathogen phylo-
genies. Changes in pathogen population sizes over time
[8], inference of unobserved ancestral states [9], corre-
lates of processes [10, 11], and overall phylodynamic [12]
patterns can be inferred from molecular phylogenies and
used to understand patterns of pathogen transmission at a
number of scales.
Before widespread adoption of high-throughput

sequencing limitations and costs led to amplification
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and sequencing of short fragments of pathogen genomes
[13, 14]. These subgenomic fragments were often chosen
for their diversity such as viral surface glycoproteins that
experience selective pressures from vertebrate immune
systems or their utility such as routine sequencing of
Human immunodeficiency virus (HIV) pol gene to test
for drug resistance [15, 16]. Whilst subgenomic fragments
of pathogens are very accurate and specific as diagnostic
markers and informative about long-term evolution their
length (dictated by the compromise between information
content and ease of sequencing) limits their utility in
detailed molecular epidemiology investigations for exam-
ple during outbreaks [17] as only mutations occurring
within the small region of the genome that is sequenced
are available for phylogenetic inference.
Molecular clocks have been particularly useful inmolec-

ular epidemiology where the accumulation of mutations
between sequences is used as a noisy approximation for
elapsed time, given either times of events in the phylogeny
(sequence dates or dates of common ancestors) or a previ-
ously determined molecular clock rate. Generally neutral
pathogen variation at the nucleotide level ebbs and flows
under the forces of population genetics unlike beneficial
or deleterious variation which tends to either fix or be
purged rapidly, respectively. Due to their random and dis-
crete nature mutations are modelled as a Poisson process
[18] where the waiting time t for observing a mutation
at a single site is exponentially distributed with evolu-
tionary rate parameter R. The probability of observing 0
mutations at a single site after time t is e−Rt and the proba-
bility of at least one mutation is therefore 1− e−Rt . Higher
evolutionary rates R or waiting times t result in higher
probabilities of observing at least one mutation at the site
in question. Since sites are assumed to evolve indepen-
dently the probability of observing at least one mutation
across L sites is

P = 1 − e−RLt , (1)

where RL is expressed in substitutions per year (rate in
substitutions per site per year multiplied by number of
sites). Since the probability of observing at least one muta-
tion changes depending on waiting time (and vice versa)
we instead focus on the mean waiting time until at least
one mutation appears. The mean of an exponential distri-
bution is λ−1 where λ in our case is RL such that mean
waiting time t̄ under a given evolutionary rate R and
sequence length L becomes

t̄ = 1
RL

(2)

When the evolutionary rate R or sequence length L are
low mean waiting times t̄ are lengthened and vice versa.
It also suggests a worrying relationship between R, L, and

t̄ - a reduction in either R or L leads to a reciprocal reduc-
tion in t̄ such that reducing the number of sites by 10%,
for example, requires a 1

0.9 = 1.11(1)-fold increase in evo-
lutionary rate to maintain the same temporal resolution t̄
or risk increasing the waiting time for a mutation by the
same amount (i.e. ≈11% or 0.9 of the original resolution
available). This gets worse reciprocally such that halving
the sites requires doubling the evolutionary rate, using
10% of the sites requires a ten-fold increase in evolution-
ary rate, etc.
Since both maximum plausible evolutionary rates R

and genome length G are largely dictated by deleteri-
ous mutation load neither quantity will vary substantially
for a given pathogen though individually R and G can
vary substantially where for example viruses have high
R and low G on average and bacteria have higher G
but lower R. Sequencing recovers some fraction f of the
genome length G (L = Gf ) for analyses and sequenc-
ing complete genomes (f = 1.0; L = G) is the best
possible scenario since sequencing any shorter region
requires the evolutionary rate to increase by a factor
of 1

f which even if L = 0.4G means the evolutionary
rate would have to be 2.5 times faster in the remain-
ing 0.4 of the genome to be able to record information
in the form of mutations at the same speed as complete
genomes. The message of our manuscript, at least as far
as densely sampled infectious disease outbreaks go, is
that the task of sequencing a complete pathogen genome
will rarely be as miserable a task as analysing a fraction
of one.
In this study we show this by quantifying how much

information relevant to phylodynamic analysis is lost
when shorter genomic regions are used instead of full
genomes. By focusing our attention on a subset (600
sequences) of a well-characterised genomic sequence data
(comprised of >1600 viral genomes) set derived from the
West African Ebola virus epidemic of 2013-2015 [11] we
estimate loss in precision and accuracy of molecular clock
models and phylogeographic inference methods when
only the glycoprotein gene (GP), a region representing just
10% of the viral genome, is analysed despite GP evolv-
ing at rates faster than the genomic average. Our methods
rely on masking tip dates and locations for 60 (10%) of
the sequences in a classic training-testing split where we
re-infer these parameters as latent variables using Markov
chain Monte Carlo (MCMC). We show that this reduc-
tion in data not only leads to severe mixing issues in
MCMC analyses by removing the constraints additional
data impose on plausible parameter space without adding
restrictive priors to compensate, but can also result in
unreliable tip date and location inference. Despite achiev-
ing much better temporal resolution when using complete
viral genomes we still find residual error caused by inher-
ent randomness of mutations which is close to theoretical
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expectations (Eq 2). We refer to this as the temporal
horizon, i.e. a temporal resolution limit where popula-
tion processes occurring at a rate faster than the rate at
which mutations enter and are observed in a population
will not be captured with high fidelity even with genome
sequences.

Results
Loss of phylogenetic signal
Figure 1 shows the reconstructed phylogenies in substitu-
tion space (right) and time space (left) for 600 complete
Ebola virus genomes (top) or just GP sequences (bottom).
Although higher levels of divergence are observed in the

Fig. 1 Phylogenies of West African Ebola virus genomes (top) or GP sequences (bottom). Temporal phylogenies recovered using BEAST are shown
on the left and maximum likelihood phylogenies recovered with RAxML are on the right. Tips are coloured based on country (Sierra Leone in blue,
Liberia in red, Guinea in green) and location (lighter colours indicate administrative divisions lying towards west of the country). Tips outlined in white
indicate the 60 chosen for date and location masking, ticks to the right of phylogenies indicate the y positions of masked tips coloured by their true
location. In temporal phylogenies branches are also coloured based on GLM-inferred ancestral locations. Nodes in temporal phylogenies with <0.10
posterior probability are indicated with grey X marks. Maximum likelihood phylogenies on the right are rooted via temporal regression in TreeTime
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GP dataset, as seen from tree height, the differences in
the number of non-polytomic nodes between genomic
and GP data are clear, indicating substantially better res-
olution in disentangling the exact relationships between
lineages in the former. Additional file 1 shows where
in the better resolved maximum likelihood phylogeny of
genome sequences the mutations that occurred in just
the region spanning the GP gene are located with con-
tinuous blocks of colours corresponding to regions of
the tree that would become collapsed if only the GP
data were used and the tree were inferred correctly.
Internal branches of a phylogeny correspond to hypothe-
ses of common ancestry and in the case of GP only
42 internal nodes are identified in the maximum like-
lihood phylogeny compared to 210 internal nodes for
complete genomes. The one aspect of the West African
epidemic that can be inferred from both GP and genome
phylogenies is that the virus’ origins lie in Guinea but
details of its onwards spread are largely lost in the GP
phylogeny. Genomic data, on the other hand, despite a
reduction from over 1600 sequences described in the orig-
inal study [11] down to just 600 still contain information
about the role of Sierra Leone’s epidemic in maintain-
ing transmission across the region through both endemic
proliferation of lineages and their spread to neighbouring
countries.
Unlike maximum likelihood phylogenies where branch

lengths are directly proportional to the expected number
of substitutions branch lengths in temporal phylogenies
are usually smoothed out by the fact that a range of dates
are compatible with a given number of mutations on a
branch. Thus even large polytomies can be resolved into
a branching structure derived from the tree prior albeit
without much support for any given configuration. So
despite the maximum likelihood of GP exhibiting a lot
of polytomies (Fig. 1) the corresponding temporal phy-
logeny (left) does not, though it is more star-shaped than
its genome equivalent with long external branches as well
as numerous nodes with less than 0.10 posterior support
(marked by grey crosses). Though the trees were too large
to estimate robust tree distance statistics such as sub-
tree prune and regraft (SPR) distances, Robinson-Foulds
distances are not, and are smaller between the GP and
genome maximum likelihood trees (188) than between
Bayesian timetrees (1068). There are also noticeable dif-
ferences in total tree length and whereas it is entirely
expected that the maximum likelihood tree of GP should
be larger (0.08076 substitutions/site) than the genome
substitution phylogeny (0.06782 subs/site) due to the for-
mer’s faster rate of evolution the tree length of time trees
differ 2-fold - 80.299 years for genome versus 173.018
years for GP. There is also a noticeable degree of branch
clustering by country in the GP temporal phylogeny possi-
bly caused by proximity of locations within country which

in the absence of genetic information cannot be resolved
to the same degree as with genomic data.
In contrast to the maximum likelihood phylogeny of

GP on the right (Fig. 1) its corresponding temporal phy-
logeny on the left exhibits a reconstruction of the West
African epidemic largely consistent with what has been
established previously [11]. This is likely to be caused
by the combined effects of two sources of information.
First, additional information is added by specifying the
collection dates for sequences which might exclude cer-
tain topologies from being considered during MCMC on
account of the relatively small effective population size of
Ebola virus in West Africa. Second, the generalised linear
model approach to inferring migration is information-
rich as it provides over 3000 possible parameter values
(pairwisemigration rates between locations) per predictor
matrix and thus if a few branches are strongly selecting for
a “correct” predictor matrix to be included in the migra-
tion model that predictor matrix can then be used to
determine the likely locations of branches for which less
information is available. However, a simpler continuous
time Markov chain model where each individual pairwise
migration rate is inferred individually in a maximum like-
lihood framework exhibits broadly similar patterns too
(Additional file 2).

Loss of temporal information
Inferring masked tip dates from 10% of the sequences
(Fig. 2) is an intuitive way to show both the inherent noisi-
ness of molecular clock estimates as reflected in the width
of 95% highest posterior density intervals for inferred
dates and the differences in temporal resolution between
GP and genome alignments. True collection dates for
genomes are mostly (56 out of 60, corresponding to a cov-
erage probability of 0.93) within the 95% highest posterior
density (HPD) of estimated dates and the mean absolute
error is ≈22 days across all masked tips. In contrast the
95% HPDs for inferred dates in the GP dataset capture
more of the true dates (58 out of 60, coverage proba-
bility ≈0.96) at the cost of markedly reduced precision
with mean absolute error going up to ≈106 days or ∼3.5
months. Despite having lower coverage probability more
precise date estimates are derived from complete genomes
with an average 95% HPD width of ≈102 days compared
to≈458 days for GP. Another way of thinking about where
the loss of information occurs is to consider root-to-tip
against tip date regressions shown in Additional file 3
where waiting times for mutations are too long to estimate
the slope of the regression reliably as every new mutation
is seen across sequences collected over a longer interval
of time. Observed errors (Fig. 2 but also Additional file 4
for maximum likelihood equivalent) for both datasets are
very close to theoretical expectations calculated using
Eq. 2: 22 (observed) versus 20 (expected) days for Ebola
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Fig. 2Masked tip date inference from genomes (left) and GP sequences (right). Inferred collection dates in the masked set based on genomes (red,
left) and GP sequences (blue, right). Each vertical line corresponds to the 95% highest posterior density for the inferred tip date (y-axis) coloured red
(genome) or blue (GP) if it falls within the true collection date (x-axis) and black otherwise. Dashed diagonal line indicates the 1-to-1 line. A
histogram of signed residual errors between mean posterior date estimate and true date for each masked tip is shown in the second row with the
black hatch indicating the mean. A histogram of absolute residual errors (accuracy) between mean posterior date estimate and true date for each
masked tip is shown in the third row with the black hatch indicating the mean and the higher black hatch topped with a circle corresponding to a
theoretical expectation based on Eq 2. Fourth row shows the histogram of confidence interval widths for date estimates (precision)

virus genomes and 106 (observed) versus 113 (expected)
days for GP. Also note that for many tips in the GP data set
independent Markov chains in some cases converged on,
and in other cases sampled from, different distributions
for masked tip dates (i.e. local maxima) resulting in multi-
peaked posterior samples after combining independent
analyses.

Migrationmodel is strongly informed by tip dates and
locations
Differences between genomic and GP datasets are clear
and dramatic when looking at both phylogenies (Fig. 1)
and masked date inference (Fig. 2) but less pronounced
when trying to infer the location of a masked tip (Fig. 3).
Although locations are correctly inferred more often and
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Fig. 3Masked tip location inference from genomes (left) and GP sequences (right). Horizontal bars indicate the posterior distribution of masked tip
locations, coloured by country (Sierra Leone in blue, Liberia in red, Guinea in green) and location (lighter colours indicate administrative divisions
lying towards west of the country). The correct location of each tip is outlined in white with the smaller plot to the right showing only the posterior
probability of the correct location. Bars marked with an open circle indicate cases where the correct location is within the 95% credible set and solid
circles indicate cases where the location with the most probability mass is also the correct location. Posterior distribution of probability-weighted
distances between population centroids of inferred and correct locations is shown at the bottom with mean indicated by a tick mark

with greater support in genomic sequences compared to
just the GP gene there are numerous tips whose locations
are not correctly inferred even from genome sequences
(Fig. 3 and Additional file 5 for maximum likelihood
equivalent). This might reflect the nature of these param-
eters of interest since phylogenies and date inference ulti-
mately draw information from mutation accumulation via
relatively straightforward models of sequence evolution
with limited parameter space. In contrast, migration pro-
cesses are far more complicated and nuanced without a
de facto standard for modelling though continuous time
Markov chain (CTMC) approaches are widely used with
most advanced methods relying on generalised linear
models without excessive over-parameterisation. Despite

the lack of strong contrast in power to infer masked
locations between genomes and GP sequences cross
entropies indicate better performance with complete
genomes (6054.631 nats) than with GP (9905.726 nats).
Similarly, locations are inferred correctly more often

with complete genomes than with GP sequences where
the maximum probability location (i.e. the model’s best
guess) matches the truth. Specifically, using complete
genomes results in 0.540 probability of guessing correctly
compared to 0.286 probability for GP (for a calibration
of both models see Additional file 6). The model makes
these guesses with more certainty too where the mean
probability of the true location is 0.482 with genomes
and 0.219 with GP and mean probability of best guess
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(i.e. maximumprobability) is 0.680 and 0.396, respectively.
We also calculated the great circle distances between the
population centroids of true and each predicted loca-
tion weighed by probability which should ideally be 0.0
(0 km distance multiplied by probability of 1.0). The
mean of these distances across masked tips are 75.886
kilometres for genomes compared to 164.309 km for GP
sequences.
In addition to assessing how well tip locations can be

inferred from genetic information we also looked at how
well historical patterns were reconstructed from sequence
data. To accomplish this we looked at the posterior distri-
bution of ancestral locations of lineages that gave rise to
four sequences in the data. The four lineages were chosen
for their well-characterised histories in the broader epi-
demic as well as complexity of migration. Note that when
we describe the movements of these lineages they are
referred to by the strains that would eventually descend
from them but it should in no way be interpreted as a
single virus or patient moving around the region through-
out the epidemic. Instead, all four strains share a num-
ber of common ancestors (the tree that would describe
their relationships can be represented as (((‘14859_EMLK’,
‘MK3462’),‘EM_004422’),‘PL5294’);) whose locations can
be inferred from the geographic distribution of their rela-
tives and descendants.
Of the four representative sequenced viruses cho-

sen three (‘14859_EMLK’, ‘MK3462’, ‘EM_004422’) are
descended from the viral lineage that jumped across
the border from Guéckédou prefecture in Guinea into
Kailahun district in Sierra Leone. The common ancestor
of two of those (‘14859_EMLK’ and ‘MK3462’) continued
onto Kenema district in Sierra Leone from Kailahun dis-
trict (also Sierra Leone). Unlike the lineage/transmission
chain that eventually gave rise to strain ‘14859_EMLK’
which continued onto Conakry prefecture in Guinea
and back-spilled into Sierra Leone’s Kambia district
(where the descendent strain ‘14859_EMLK’ was collected
[19]) right across the border later in the epidemic, the
lineage/transmission chain that was ancestral to ‘MK3462’
stayed in Sierra Leone for the remainder of the epidemic
and found itself moved westwards towards Freetown
(Western Urban and Western Rural districts) until finally
jumping to Bombali district where its descendent strain
was collected from a patient [19]. Unlike all the other
three lineages the transmission chain/lineage (“lineage A”
[20]) that would leave strain ‘PL5294’ as a descendent is
thought to have been largely restricted to the environs
of Conakry prefecture in Guinea. An older ancestor of
strain ‘PL5294’ had migrated from Guéckédou prefecture
into Conakry prefecture on the other side of the country
relatively early in the epidemic where its descendents cir-
culated for a large portion of the West African epidemic
though unlike a lot of its relatives the direct ancestor

that would eventually give rise to strain ‘PL5294’ spilled
over into Kambia district of Sierra Leone [19]. Finally,
the transmission chain/lineage that would eventually give
rise to strain ‘EM_004422’ had a tumultous history in the
region. Strains ‘EM_004422’, ‘14859_EMLK’ and ‘MK3462’
all shared the same common ancestor in Kailahun district
of Sierra Leone but the progenitor of strain ‘EM_004422’,
unlike its relatives, made a jump to Liberia (Lofa and
Montserrado counties) fromwhere its descendants spilled
back into Macenta prefecture in Guinea. This trans-
mission chain would later leave descendants (of which
‘EM_004422’ is representative) that jumped to neighbour-
ing Kissidougou prefecture (also Guinea) and where strain
‘EM_004422’ was collected [20].
The histories of the lineages that gave rise to these four

tips are for the most part reconstructed from both GP
sequences and genomes consistently (Fig. 4) likely as a
result of additional information brought in by specifying
tip dates and their collection locations. Genomic data tend
to concentrate the probability mass towards a single loca-
tion at any given time in contrast to GP sequences where
several locations can be considered with non-negligible
probabilities at numerous time points (Fig. 4 and Addi-
tional file 7) and where timing of ancestral migration
events is considerably more diffuse or even substantially
off (i.e. Fig. 4a and d). What is even more apparent is
that without the additional information available when
using complete genomes and without aiding the sampling
with strongly informative priors MCMC explores a wider
variety of low-probability migration paths as indicated by
maps on the right of each plot in Fig. 4. In the case of
the ancestral lineage of ‘EM_004422’, for example, a series
of migrations through distant Conakry (western Guinea)
are reconstructed with relatively high confidence fromGP
sequences compared to shorter distance migrations that
run through neighbouring Liberia reconstructed from
genomes.
Despite markedly reduced information content for both

total number of sequences (>1600 to 600) and additional
loss of information in GP (≈90% fewer sites) sequences
the same core correlates of migration are recovered for
both datasets in the generalised linear model (Fig. 5) com-
pared to previous findings using all available sequence
data. These are: population sizes at origin and destina-
tion locations, within country migration effect, and great
circle distances which are identified as strong predictors
of migration with high (>50 Bayes factor, BF) albeit not
categorical support (Fig. 5). Four other migration predic-
tors for the GP dataset have support >5 BF and <15
BF which are international and national border sharing,
Liberia-Guinea asymmetry, and index of temperature sea-
sonality at origin. Of these Liberia-Guinea asymmetry
and international border sharing are also found to be
good predictors of migration in genomic data though
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Fig. 4 Posterior traces of ancestral locations and posterior migrations for four Ebola virus lineages from genomes (top) and GP sequences (bottom).
The inferred ancestral branch location is logged at time points along the path from selected tips to the root of the tree across the posterior
distribution of trees. The smoothed trajectories are an indication of where and when a lineage that gave rise to a particular tip is inferred to have
existed. Maps on the right show migration events that are inferred to have taken place coloured by their posterior probability with migrations with
<0.05 posterior support are shown as dotted white lines. All lineages share a common ancestor in Guéckédou prefecture of Guinea (white outline in
the map) where the original zoonotic transmission event occurred near the Guinean border with Sierra Leone and Liberia. Some lineages are also
descended from an early spillover event into Sierra Leone

confusingly Liberia-Guinea asymmetry has the opposite
correlation sign with GP sequence data. Apart from this
deviation predictors for both genome and GP gene
datasets mostly have the same sign and very similar effect
sizes. As mentioned previously (Figs. 1 and 4) this sug-
gests substantial amounts of information being derived
from collection dates and locations of tips rather than
genetic information. The reduction in total numbers of
sequences as well as reduced phylogenetic information in
the GP dataset appears to enable the migration model to
explore combinations of predictors that would otherwise
be confidently excluded with complete genomes and thus
a larger number of predictor matrices is included in the
migration model with low probabilities. The differences
between genomic and GP data though seemingly small
(e.g. Fig. 3) is more pronounced when looking at total

entropy of inclusion probabilities: 1.285 nats for genome
data, and 2.688 for GP sequences.

Temporal resolution
As discussed in the introduction the mean waiting time
for a mutation is 1/RL (Eq. 2) and depends on the rate
at which mutations arise and are sampled by sequencing
(evolutionary rate, R) and number of sites under obser-
vation (alignment length, L). Since 1/RL defines a linear
relationship between rate R and length L mean waiting
times for mutation can be reduced by an increase in
either R or L. In order to double temporal resolution one
can either double the evolutionary rate R or double the
alignment length L. The former is generally outside the
researchers’ control though genomic regions evolving at
a faster rate exist in many pathogens. How much faster
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Fig. 5 Correlates of migration identified from genomes (red) and GP sequences (blue). Effect size and direction of correlation between predictor
matrices and migrations are shown as half violin plots where the top kernel density estimates (in red) are derived from genomes and bottom kernel
density estimates (in blue) are derived from GP sequences conditioned on the predictor matrix being included in the model. Kernel density
estimates of coefficients where predictors have <3 Bayes factor support are outlined in dashed lines. Posterior inclusion probabilities are shown on
the right (red for genomes, blue for GP sequences) with appropriate Bayes factor cutoffs indicated by dashed lines

smaller regions evolve will depend on forces of popula-
tion genetics such as ability to recombine with respect to
the rest of the genome (strength of Hill-Robertson effect
[21]) as well as positive selection or functional constraints.
It is thus unlikely that significantly higher rates will off-
set the reduction in resolution caused by focusing on
a very small genomic region. Extending the region that
is sequenced, on the other hand, is often trivial outside
of resource-limited areas and can dramatically improve
temporal resolution.
To help researchers intuit the impact of sequence length

and evolutionary rate on temporal resolution we show
the relationship between evolutionary rate and alignment
length in determining mean waiting times until a muta-
tion is observed in Fig. 6. In addition to theoretical expec-
tations we also show where a variety of viral pathogens
fall along the two axes - estimated evolutionary rates with
uncertainty intervals on the y-axis and alignment length

on the x-axis. Subgenomic alignments shown in Fig. 6
include the small hydrophobic (SH) gene of mumps virus
[22] and glycoprotein (GP) sequences of Ebola virus anal-
ysed in this study as well as sequences of two human
influenza A viruses: genome of subtypeH1N1/09 [23], and
haemagglutinin sequences of subtypes H1N1/09 [4] and
H3N2 [24], sequences of two commonly studied blood-
borne pathogens: pol, env, and coding regions of HIV-
1M [25] and nonstructural protein 5B (NS5B) region of
hepatitis C virus [26]. With respect to temporal resolution
influenza A virus haemagglutinin gene (HA) is expected
to acquire a mutation every one to two months on aver-
age compared to around three to six months for Ebola
virus GP and over a year for mumps virus SH. Though all
of these sequences are from (-)ssRNA viruses SH and GP
genes are part of a single non-recombining RNA genome
[27] whereas HA genes of influenza A viruses are encoded
on their own segment which can be unlinked from their
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Fig. 6Mean waiting times for a mutation as a function of alignment length and evolutionary rate. Contours correspond to mean waiting times
under a given combination of alignment length and evolutionary rate. Genomes and barcode genes for a variety of viruses are shown with reported
evolutionary rate confidence intervals (vertical lines) and including analyses of Ebola virus genomes (red violin) and GP sequences (blue violin)
reported here. Most genomes occupy parameter space implying temporal resolution of a mutation once every month or so. Subgenomic
fragments on the other hand are expected to have mean mutation waiting times of more than a month

genomic background via reassortment. Because Ebola
and mumps virus genomes do not recombine their poly-
merases may have been selected for higher fidelity due to
Hill-Robertson effect.
Complete genomes, on the other hand, occupy param-

eter space that implies that a new mutation occurs
on average every month or every few weeks. This is
achieved through having more sites rather than substan-
tial differences in evolutionary rates, which differ only
marginally with respect to subgenomic fragments. Despite
this no virus is expected to acquire mutations faster than
about once per week on average and the two genomes
with highest predicted temporal resolution - Middle
East respiratory syndrome coronavirus (MERS-CoV) and
H1N1/09 - are difficult to analyse due to recombina-
tion and reassortment, respectively, though advances are

being made in modelling reticulate evolution [28]. The
inverse relationship between observed evolutionary rate
and sequence length is similar but not the same as the rela-
tionship between virus genome sizes and mutation rates
where high mutation rates and large genome sizes lead
to substantial deleterious mutation load [29]. This upper
limit on mutation waiting times set by optimal evolu-
tionary rates is what we refer to as the temporal horizon
- population processes with inverse of rate (i.e. waiting
time) less than the rate at which a pathogen acquires
mutations will not be captured with high fidelity by cur-
rently existing methods. The exact relationship between
mutation waiting times and rates of processes will of
course be complicated by the presence of co-circulating
lineages, site-wise rate heterogeneity, and choice of model
for population processes of interest.
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Discussion
Theoretical considerations
For studies focused on temporal dynamics of pathogens
over shorter periods of time the waiting time for a muta-
tion should ideally be smaller than the inverse of the rate at
which a process of interest occurs. Serial interval is often
of most interest usually and has been addressed previously
[30, 31] but migration or cross-species transmission rates
could also exceed the critical temporal resolution thresh-
old if sequences are assigned to compartments that are
too small, i.e. the granularity of the analysis is increased by
using a larger state space in the model. It is likely that this
resolution limit will be improved greatly in the future by
including additional information, either some aspects of
a known transmission tree or more likely pathogen vari-
ation at the within-individual level where variant sharing
between two or more individuals is evidence of their link-
age in a transmission cluster. Much like evolutionary rates
these methods might encounter biological limits outside
of researchers’ control, however.
In addition to emphasising the need to sequence com-

plete pathogen genomes we also hope that our study
imparts the interpretation of pathogen evolutionary rates
as primarily a parameter indicating temporal resolution
of sequence data rather than a parameter of particular
biological relevance. There have been previous incidents
were a misunderstanding of the relationship between evo-
lutionary rates and alignment length has been used to
argue that low within-outbreak divergence in Ebola virus
GP during the outbreak in Kikwit (Democratic Repub-
lic of Kongo) in 1995 was evidence of “genetic stability”
[32]. What is far more likely to have taken place, how-
ever, is the phenomenon we show with our GP data
(Fig. 1 and Additional file 1) where even after more than
two years of the West African epidemic the GP gene is
too short to accumulate appreciable numbers of muta-
tions. Higher reported evolutionary rates early in theWest
African epidemic [33] have also been misreported as hav-
ing biological meaning though not by the original study
[34, 35] and arose through intense sequencing of a single
transmission chain where mildly deleterious viral variants
might not have been purged by purifying selection. We
hope that our study clarifies that evolutionary rates are
primarily a parameter of statistical resolution rather than
of evolutionary forces and on their own are not suffi-
cient to correctly interpret molecular clock data. Ideally,
in the future sequence length and elapsed time will be
included next to evolutionary rate estimates in order to
transparently communicate statistical power available for
analysis.
There is an additional Bayesian phylogenetic argument

to bemade in favour of using complete genomes.Molecular
clock phylogenetics often relies on Markov chain Monte
Carlo sampling to approximate the posterior distribution

of phylogenetic trees [36]. Sequences which fall into poly-
tomies in substitution phylogenies (i.e. well-defined com-
mon ancestry but no indication of exact branching order)
are particularly problematic since plausible temporal phy-
logenies can be reconstructed in the absence of mutations.
The branching order of such clades in time trees will be
determined via the tree prior since no information about
branching order can be recovered from the sequences
themselves. There are over 34 million possible rooted
trees for a set of 10 sequences but many of these might
not be visited during MCMC if, for example, sequences
are collected over time and effective population size (Ne)
is low. Nonetheless, MCMC is particularly inefficient at
sampling tree topologies for identical sequences [37] since
increasing the number of identical sequences leads to
expansion of search space without adding additional infor-
mation that could constrain the search. Until reliable
methods are developed and standardised the current solu-
tion is to reduce the numbers of identical sequences going
into temporal MCMC analyses.

Practical considerations
As well as temporal resolution concerns raised previously
there are practical issues to consider when sequencing
pathogens. Although many pathogens have established
“barcode” genes or regions [38] some do not. This can eas-
ily lead to different groups sequencing different pathogen
genes by chance or choice as has happened with Ebola
virus previously where GP [39], a short fragment of the
polymerase [40], or nucleoprotein [41] were sequenced
which is not necessarily a problem when sufficient com-
plete genomes are available to bridge information between
disparate regions and appropriate methods of analysis
are used [42]. Sequencing complete pathogen genomes in
addition to providing the best possible resolution tempo-
rally in terms of mutation content (Fig. 6) also ends up
aiding in standardising data between studies in the sense
that a sequenced genome is a complete unit of data and
there is nothing more to be done for sequence data except
gathering better metadata.
It is also worth considering that the lifetime of sequence

data extend beyond publication. Most scientific stud-
ies are designed with specific questions in mind that
guide how data are collected and analysed to improve the
researchers’ ability to detect differences. This makes com-
bining data across studies with different goals (and cor-
respondingly different data and approaches to analysing
them) challenging. Sequence data on the other hand only
become difficult to combine when sequences are too
diverged to reliably align or are too numerous to infer
phylogenies in reasonable time. Since divergence levels
are generally low within outbreaks (with exceptions [43])
sequence data are often trivial to combine. More than
that, including sequence data from previous studies can
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reciprocally contextualise both older and newer sequences
(e.g. [44]). What remains problematic is determining and
standardising additional data pertaining to the sequences
themselves (“metadata”) in a way that makes sequence
data easy to use by other groups. Whilst date and loca-
tion of collection are widely reported and often of most
interest non-standard encodings of both are seen in public
databases.

Stating the obvious
As phylodynamic approaches are increasingly being
applied to non-viral organisms it is important to set a good
example of best data generation and analysis strategies.
Sequencing complete bacterial genomes should lead to
temporal resolution values comparable to those of viruses.
For example Enterococcus faecium, evolving at a reported
genomic evolutionary rate of 9.35 × 10−6 substitutions
per site per year [45] and with a genome length of around
3.2Mb, is expected to experience at least one mutation in
its genome every 1

9.35×10−6×3.2×106 ×365 days= 12.2 days.
These values are 4.41 years forMycobacterium tuberculo-
sis (evolutionary rate 5.67 × 10−8 subs/site/year [45] and
a genome 4Mbp long) and 53.6 days for Staphylococcus
aureus (evolutionary rate 2.43 × 10−6 subs/site/year
[45] and a genome 2.8Mbp long) though care should
be taken with evolutionary rate estimates as these are
often reported per variable sites instead of genomic sites.
Recombination is also a common though not universal
concern when it comes to bacterial phylodynamics.
We have shown that a relatively simple model of

sequence differentiation (Eq. 2) exhibits good correspon-
dence with empirical results (Fig. 2) and can be used as
a back-of-the-envelope calculation to gauge the power
of a phylodynamic analysis. The relationship defined by
Eq. 2 also describes a serious drawback of using partial
genomes, namely that maintaining the same temporal res-
olution with decreasing fractions of the total sites available
in a genome requires the remaining sites to evolve at
increasingly unrealistic rates. This relationship is recipro-
cal such that for a 90% reduction in alignment length a
10-fold increase in evolutionary rate is required to achieve
the same temporal resolution when compared to a com-
plete genome. It is not at all surprising then that reducing
the number of alignment columns by nearly 90% from
≈19,000 nucleotides that comprise the entire Ebola virus
genome down to around 2,000 nt of the GP gene results
in severe loss of information even if this shorter region
evolves at a faster rate. Here we have quantified this loss of
information via several methods: raw phylogenetic resolu-
tion (Fig. 1), molecular clock signal (Fig. 2), and aspects of
migration model (Figs. 3, 4, and 5), which are summarised
in Additional file 8.
In most cases biological aspects of the data such as pre-

cise branching order andmolecular clock resolution suffer

from severe loss in temporal resolution (Fig. 2) whereas
modelling of non-biological aspects of the data, i.e. migra-
tion, tend to be more robust (Figs. 3 and 5). This is very
likely to be caused by temporal and geographic rather
than genetic features of the sequence data [46]. A clus-
tering of sequences from a particular location collected
over a short period of time is likely to be a genuine out-
break cluster within a wider epidemic and in the absence
of genetic information phylogeographic models tend to
group sequences by location. This might explain why
in many cases when comparing analysis results between
genome and GP datasets statistical power in migration
model remains disproportionately high despite retaining
only 10% of available sites and mutations and results
between the entire >1600 genome data set [11] are very
similar to the reduced data set analysed here. On a simi-
lar note case numbers alone have been used to recover a
gravity-like model for the spread of Ebola virus in West
Africa [47] previously, further arguing that the clustering
of cases in time and space contains sufficient information
about the movement of Ebola virus in West Africa. The
overall conclusion from our study as well as others [17] is
that sequencing short genomic regions instead of whole
genomes is an ill-advised practice for investigating infec-
tious disease outbreaks in any appreciable detail across
relatively short timescales.

Methods
Sequence data
A publicly available dataset of 1610 Ebola virus genomes
sequenced by various groups [19, 20, 33, 48–55] and
systematised in [11] was filtered to remove sequences
where over 1% of the genome sequence was ambiguous
or the precise location down to administrative division
was not available leaving 943 genomes. A set of 600
viral genomes were randomly sampled from the filtered
dataset of 943 high quality genomes. Of the 600 genomes
that were chosen for analysis 10% (60 genomes) were
chosen for masking where for all subsequent analyses
both the date and location were considered as unknown
and inferred as latent variables. Date inference was con-
strained via a uniform prior bounded by 2013 December
01 and 2015 December 01 corresponding roughly to the
presumed beginning of the epidemic in late 2013 and its
end in autumn of 2015. Another dataset was generated
by extracting the glycoprotein GP coding sequence (with
padding inserted into the polymerase slippage site to bring
it in-frame) from the complete genomes dataset resulting
in an alignment 2031 nucleotides long.

Bayesian analyses
Both GP and genome datasets were analysed in BEAST
v1.8.10 [56] under the generalised linear model (GLM)
described previously [3, 10, 11] to infer the migration
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model. Sites in both GP and genome alignments were par-
titioned into codon positions 1, 2, and 3, with the genome
analysis also including a partition comprised of non-
coding intergenic regions. Each partition was assigned
an independent HKY+�4 [57, 58] substitution model.
A relaxed molecular clock [59] with an uninformative
CTMC reference prior on the mean [60] of the log-normal
distribution was used as the clock model. A flexible sky-
grid tree prior [61] was used to infer estimates of effective
population size across 100 evenly spaced points in time
starting 1.5 years prior to the collection of the most recent
sequence to the date of the most recent sequence.
Both analyses (genome and GP) were set to run for 500

million states sampling every 50,000 states and run three
(genome) or seven (GP) times independently. Due to tech-
nical issues with computational resources many analyses
were not able to run to completion and so for full genomes
only 136.5, 86.2, and 143.8 million states were sampled
though after combining independent chains effective sam-
ple size (ESS) values are nearly the recommended 200.
With the worst ESS values being prior (78) and precision
(87) of GLM random effects, tree height (123), and prior
(192), though largely as a result of bad mixing rather than
convergence to different posteriors. Inference of masked
tip dates often had poor ESSs as well mostly because
of bad mixing and one example where all three chains
independently sampled from two posterior distributions.
Similarly for GP only two MCMC analyses ran their

allotted 500 million states with others running to 259.9,
253.9, 255.8, 261.65, and 261.5 million states. Unlike
complete genome MCMC analyses GP analyses exhibit
relatively poor ESS values even after combining seven
independent chains which is indicative of bad mixing
in the absence of additional data contained in complete
genome sequences and uninformative priors. Poor ESS
values amongst re-inferred tip dates are even more preva-
lent when using GP data and are primarily caused by both
convergence of independent chains onto different station-
ary distributions and individual chains sampling distinct
distributions. Worst ESSs for other parameters were: like-
lihoods for the three codon positions (48, 31, and 48
for positions 1, 2 and 3, respectively), overall likelihood
(60), joint/posterior (98), coefficient of variation (104),
standard deviation of lognormal distribution from which
branch rates are drawn (107), alpha parameter of gamma
distribution used to model rate heterogeneity across sec-
ond codon positions (155), tree prior (166), overall prior
(177), and effective population size estimate at the earliest
grid point (190).
Convergence, mixing and appropriate burn-in values

were assessed with Tracer v.1.7 [62] where 50 million
states from every analysis (genome and GP) was discarded
as burnin with GP data additionally subsampled down to
a quarter of the sampled states. Log files of analyses are

available on GitHub at https://github.com/blab/genomic-
horizon/blob/master/data/xml/logs.zip and traces for
posterior, prior and their product (called posterior) prob-
abilities are shown in Additional file 9.
Posterior distributions of inferred tip dates for the

masked set were logged during MCMC and 95% high-
est posterior density intervals were computed using a
custom Python script due to multi-peaked posterior dis-
tributions after combining independent analyses. Briefly,
the script takes a kernel density estimate of posterior sam-
ples and computes the integral of the peaks intersected
by a horizontal line that is lowered until the integral
of the peaks intersected encompasses 0.95 of the area.
Posterior distributions of trees were summarised as max-
imum clade credibility (MCC) trees using TreeAnno-
tator [56]. Inferred posterior probabilities of masked
tip locations were recovered from MCC trees. Ances-
tral location probabilities were recovered via a script
called samogitia.py with the ‘ancestry’ option (avail-
able at https://github.com/blab/genomic-horizon/blob/
master/scripts/samogitia.py) across 200 equally spaced
time points betweenmid-2013 and beginning of 2016. The
script samogitia.py uses baltic (available at https://github.
com/evogytis/baltic) to parse posterior MCMC trees gen-
erated by BEAST.

Maximum likelihood analyses
RAxML [63] was used to infer maximum likelihood phy-
logenies for genome and GP datasets under the same par-
titioning as described for Bayesian analyses: three codon
position partitions for GP and genome with genomes hav-
ing an additional partition for intergenic regions under
independent GTR+CAT substitution models. Trees were
rooted in TreeTime according to best r2 value for root-
to-tip against collection date regression with the 2 year
constraint used for masked tips described earlier. A tem-
poral phylogeny with marginal reconstruction of most
likely dates for masked tips was carried out in TreeTime
[64] as well. Ancestral sequences at internal nodes of the
clock-rooted RAxML topology were inferred using Tree-
Time under an HKY model [57] of evolution. Ancestral
location states were inferred in TreeTime using a con-
tinuous time Markov chain model identical to the one
used by [2] without the Bayesian stochastic search variable
selection. We also repeated many of the analyses under
a maximum likelihood model in TreeTime [64] like infer-
ence of masked tip dates (Additional file 4) and locations
(Additional file 5).

Error computation
For Fig. 2 mean absolute errors were computed as

ε = 1
N

( N∑
i=1

(
|ti − 1

M

M∑
m=1

ei|
))

(3)

https://github.com/blab/genomic-horizon/blob/master/data/xml/logs.zip
https://github.com/blab/genomic-horizon/blob/master/data/xml/logs.zip
https://github.com/blab/genomic-horizon/blob/master/scripts/samogitia.py
https://github.com/blab/genomic-horizon/blob/master/scripts/samogitia.py
https://github.com/evogytis/baltic
https://github.com/evogytis/baltic
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Where N is the number of masked tips, ti is the true date
of the ith masked tip, ei is the estimated date of the ith
masked tip, and M is the number of states sampled from
the posterior distribution.
For Fig. 3 errors expressed in units of distance were

calculated as

ε = 1
N

⎛
⎝ N∑

i=1

⎛
⎝ J∑

j=1
�(ti, ej) × pij

⎞
⎠

⎞
⎠ (4)

Where N is the number of masked tips, J is the number
of locations in the migration model, � is great circle dis-
tance in kilometres, ti is the coordinate of the population
centroid of the true location of the ith masked tip, ej is the
coordinate of the population centroid of jth location, and
pij is the probability that the ith tip is in jth location.
Entropies for predictors shown in Fig. 5 and location

probabilities in Additional file 7 were calculated as

S = −
∑
i
Piloge(Pi) (5)

where Pi is the mean posterior inclusion probability of ith
predictor matrix in the model for Figure 5 and probability
of ith location for Additional file 7.
Cross entropies for Fig. 3 were calculated as

H = −
N∑
i
loge(qi) (6)

where N is the number of masked tips, qi is the probability
of the true location of the ithmasked tip, which is assigned
a probability of 0.0001 if the true location does not appear
in the set of inferred possible locations (i.e. has probability
0.0) to avoid domain error.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12862-019-1567-0.

Additional file 1: Whole genome maximum likelihood tree coloured by
mutations occurring in GP. Colours indicate the cumulative number of
mutations from the root occurring in the GP gene. Much of the clade
resolution is lost when only considering mutations occurring in the GP
gene, particularly in the already highly polytomic Sierra Leonean part of the
phylogeny in red.

Additional file 2: Maximum likelihood phylogenies of complete Ebola
virus genomes (left) and GP sequences (right) with maximum likelihood
ancestral location reconstruction. Trees were inferred in RAxML [63] with
ancestral state reconstruction performed in TreeTime [64]. Inferred
phylogeographic patterns are for the most part consistent with Bayesian
results presented in Fig. 1 with severe loss of statistical power when using
GP instead of genome sequences.

Additional file 3: Root to tip regression for maximum likelihood trees of
genome (red) and GP (blue) sequences. Linear regression of sequence
collection dates against distance from the root gives evolutionary rate
estimates (slope of the regression) at 0.82 × 10−3 and 0.73 × 10−3

substitutions per site per year, respectively. Despite similar rates the
correlation between collection dates and divergence from root is far better
using genomes (r2 = 0.76) than GP sequences (r2 = 0.13).

Additional file 4: Maximum likelihood inference of masked tip dates from
genomes (red, left) and GP sequences (blue, right) using TreeTime. Vertical
bars indicate the 95% confidence interval for marginal reconstruction of
masked tip dates plotted against their true dates. Tip dates where the 95%
confidence interval excludes the true value are shown in black.

Additional file 5: Maximum likelihood inference of masked sequence
location from genomes (left) and GP sequences (right) via a CTMC model
implemented in TreeTime. Horizontal bars indicate the posterior
distribution of masked tip locations coloured by country (Sierra Leone in
blue, Liberia in red, Guinea in green) and location (lighter colours indicate
administrative divisions lying towards west of the country). The correct
location of each tip is outlined in white with the smaller plot to the right
showing only the probability of the correct location. Bars marked with an
open circle indicate cases where the correct location is within the 95%
credible set and solid circles indicate cases where the location with the
most probability is also the correct location. Genomes still perform better
in terms of correct guess (0.432 probability that best guess location is true
location for genomes versus 0.259 for GP), cross entropy (12012.800 nats
for genome versus 24397.109 nats for GP) and mean probability-weighted
great circle distance between true location population centroid and
estimated location population centroid (87.568 km for genome versus
124.909 km for GP).

Additional file 6: Calibration curve for phylogeographic model informed
with genome (red) and GP (blue) sequences. Logistic regression of
probability of the most likely location against whether it is correct or not
for genome (red) and GP (blue) sequences with jitter introduced along the
y axis to make points discernible. Overall performance of the
phylogeographic model is comparable between genome and GP
sequences as indicated by sigmoid curves matching the 1-to-1 dotted line.

Additional file 7: Entropies of posterior ancestral location reconstruction
from genomes (red) and GP sequences (blue) for four tips. Ancestral state
reconstructions from genomes typically have lower entropies relative to
reconstructions derived from GP sequences indicating better certainty in
location assignment at any given time. Red and blue bars at the end of the
plot indicate relative cumulative entropies of genome and GP sequence
reconstructions, respectively.

Additional file 8: Summary of statistics reported in this study. Each cell
shows the difference between genome (red, bottom of cell) and GP (blue,
top of cell) data for various statistics reported in this study. Descriptions for
each statistic are given at the bottom of the cell near the x-axis.

Additional file 9: MCMC traces of prior, likelihood and joint (referred to as
posterior) probabilities. Post-burnin MCMC samples of prior, likelihood and
joint probabilities for genome data (total of three chains, top) and GP data
(total of seven chains, bottom) with kernel density estimates of each chain
displayed on the right.
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